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Abstract
This paper studies the contribution of [FeO4]0 impurity substitution centres
to subkelvin thermodynamic properties of quartz glasses. In the scenario
considered an Fe3+ ion substitutes for a Si4+ ion in the metallic sublattice
of quartz, and one of the neighbouring oxygen ions captures a hole, which
compensates the local charge defect. The Fe3+ cation and the O− anion, on
which the hole is localized, form a bound small polaron. In this configuration
the Fe3+ cation is subject to a crystal field with an approximate C3 symmetry
axis along the Fe3+–O− direction. This axis plays a quantization role for
the Fe3+ electronic spin. The hole is assumed to be tunnelling between
two neighbouring oxygen ions, switching the quantization axis between two
directions and therefore entangling the spin states. Due to this coupling between
spin and spatial degrees of freedom an [FeO4]0 centre may be considered as a
paramagnetic tunnelling system (PTS). An explicit form derived for a single-
PTS low-energy spectrum, together with the model parameter distribution
function introduced, allows for a complete thermodynamic description of the
[FeO4]0-based PTS ensemble. In particular, a contribution to the ac dielectric
constant, derived as a function of magnetic field and temperature, allows
a semiquantitative fit to recent experimental data for the iron-contaminated
multicomponent glass BaO–Al2O3–SiO2. Taking into account a spin interaction
between Fe3+ and O− ions also allows us to account for the anomalous
magnetothermal behaviour of the low-temperature specific heat, recently
reported for the glasses BaO–Al2O3–SiO2 and Duran and earlier for Pyrex.

1. Introduction

The recent studies of some multicomponent quartz glasses in the subkelvin temperature range
revealed a distinct and not completely explainable theoretically reaction to magnetic field. In
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Figure 1. Relative change of the real part
of the dielectric constant versus magnetic field:
experimental data [1] for BAS fitted with
formula (40) at conditions indicated. For the
fitting parameters see table 2.

Figure 2. Relative change of the real part
of the dielectric constant versus magnetic field:
experimental data for Duran [2] and BK7 [7] at
conditions indicated. For better perception the data
points are connected with straight lines and the data
for Duran are shifted up along the vertical axis.

figure 1 the dots stand for experimental data [1] on the relative variation of the real part of
the dielectric constant versus magnetic field (δε′(B)/ε′) for the glass BaO–Al2O3–SiO2 (BAS)
at two different temperatures. It is clearly seen that δε′(B)/ε′ is nonmonotonic with applied
magnetic field 0 < B < 1 T and that the magnitude of the effect decreases with temperature.
A somewhat different nonmonotonic dependence δε′(B)/ε′ is also reported for the borosilicate
glass Duran [2] (see figure 2).

On the other hand, according to experimental data [2], in the glasses BAS and Duran
the temperature variation of specific heat CP(T ) in the range T � 1 K turned out to depend
on magnetic field in the range 0 � B � 8 T (see figures 3(a) and (b)). From figures 3(a)
and (b) one finds that in zero magnetic field the measured CP(T ) has a plateau-like form which
transforms nonmonotonically versus B until at B � 8 T it approaches the low-temperature
dependence usual for glasses:

Cg (T ) = γphT 3 + γTST . (1)

In formula (1) the first term accounts for the Debye-type contribution of acoustic phonons,
and the second is usually attributed to specific low-energy excitations in vitreous solids—the
so-called tunnelling systems (TSs) [3].

A curious fact, pointed out by Jug [4], is that a similar CP(T, B) dependence has been
observed already in the pioneer work by Zeller and Pohl [5] at B = 0 and later by Stephens [6]
at finite B in the Pyrex-type borosilicate glasses (see figure 3(c)).

It is worth noting that for all glasses mentioned above a considerable concentration of Fe3+
impurities is reported: 102 ppm for BAS and 126 ppm for Duran [2], 100 ppm for Pyrex 7740
and 12 ppm for Pyrex 9700 [5, 6].
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Figure 3. Specific heat as a function of
temperature and magnetic field: experimental data
for (a) BAS [2], (b) Duran [2] and (c) Pyrex
7740 [5] and 9700 [6], fitted with expression (48) at
the conditions indicated. For the fitting parameters
see table 3.

(This figure is in colour only in the electronic
version)

Another borosilicate glass studied, BK7, for which a concentration of only about
6 ppm of iron is reported [2], demonstrates a low-temperature dependence of δε′(B)/ε′ [7]
qualitatively similar to that in Duran (see figure 2). Yet, a magnetic field in the range
0 � B � 4 T has no detectable influence on the specific heat of BK7 [2] at subkelvin
temperatures. The nonmonotonic behaviour of δε′(B)/ε′ was also detected in the structural
glass a-SiO2+xCyHz [8], for which there are no reports on concentration of paramagnetic
impurities.

Another anomalous subkelvin property, observed in BAS, Duran and BK7, is the B-
dependence of spontaneous polarization echo amplitude [9]. Experiments show that this
property is specific to multicomponent glasses, because in pure amorphous SiO2 (Suprasil I)
the effect is absent.
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All theoretical models that have been proposed to explain the above-mentioned magnetic
anomalies are based on modifications of the standard tunnelling model [3], leading to the B-
dependence of the energy spectrum of a certain subsystem of TS ensemble. These models and
their applications are described in [4, 8, 10–15].

As mentioned above, the glasses BAS, Duran and Pyrex, which demonstrate similar
anomalous behaviour of the low-temperature CP(T, B), contain a considerable concentration
of Fe3+ impurities. At the same time the glass BK7, containing much less iron, does not
demonstrate such an anomaly. Therefore, one can draw the conclusion that the CP(T, B)
anomaly in these glasses is due to Fe3+ impurities.

The situation with magnetoelectric anomalies is somewhat more difficult. It is established
that in BAS, Duran and BK7 the B-dependences of spontaneous polarization echo amplitude
are qualitatively similar [9]. In the frame of the quadrupole tunnelling model [13] this behaviour
may be explained by the presence of impurities with nonzero nuclear quadrupole moment (27Al,
10,11B etc). On the other hand, the shape of δε′(B)/ε′ for BAS is different from those for
Duran and BK7 in the presence of a distinct maximum at Bmax ∼ 10−2 T in the former case
(cf. figures 1 and 2). These features have no theoretical explanation up to now.

In our previous publication [15], the model of the four-level paramagnetic tunnelling
systems (PTSs) was formulated. It considers an abstract particle, moving in a one-dimensional
double-well potential. The particle possesses a magnetic moment J > 1/2. In each potential
well this moment is quantized along the local axial-symmetric electric field gradient (EFG) in
such a manner that a doublet of states |±J 〉 is found in the ground state. Under a certain
temperature threshold the population of the rest of the spin states may be neglected and
therefore the particle may be treated as a pseudospin-1/2 one. The EFG axes in the two
potential wells are supposed to be nonparallel. Therefore, the tunnelling transitions between
the potential wells switch between the EFG orientations and thus entangle the spin states |±J 〉.
This coupling between spatial and spin degrees of freedom affects the B-dependence of the
PTS energy spectrum. In the frame of the PTS model we attempted to explain the above-
mentioned δε′(B)/ε′ behaviour in quartz glasses to be due to hole-compensated impurity
[AlO4]0 or [BO4]0 centres, where the orbital states |px〉, |py〉 of the O− ion are the symmetric
and antisymmetric combinations of the orbital moment eigenstates |±1〉. However, for such
centres in crystalline quartz the initial (at B = 0) ground-state splitting between |px〉 and |py〉
is about 0.5 eV due to a minor nonaxiality of the EFG, affecting the O− ion [16]. Thus these
orbital states are insensitive to magnetic fields which produce Zeeman splittings much less
than the B = 0 one. Of course, in glasses the B = 0 splitting is expected to be a random
variable, obeying a certain distribution function with a tail to smaller values, but nevertheless
the attribution of the δε′(B)/ε′ anomaly to such a mechanism in the range B � 1 T seems
doubtful.

The present work considers the contribution of hole-compensated [FeO4]0 substitution
impurity centres to subkelvin thermodynamic properties of quartz glasses.

The paper is organized as follows. In section 2 the microscopic structure of the [FeO4]0

centre in the quartz lattice is discussed, and based on the model spin Hamiltonian proposed
an expression for its ground energy quadruplet is derived. In section 3 the PTS model is
applied to the [FeO4]0 centre, the single-PTS energy spectrum and free energy are derived
and the ensemble-averaged (over the model parameter distribution function) contribution
δε′(B)/ε′ is found, assuming the dielectric response to be purely resonant. Then the expression
for δε′(B)/ε′ obtained is fitted to experimental data for BAS (figure 1). In section 4 the
contribution of the [FeO4]0 ensemble to CP(T, B) is calculated and fitted to experimental data
for BAS, Duran and Pyrex (figures 3(a)–(c)). In section 5 the results obtained are analysed and
discussed and section 6 is left for conclusions.
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Table 1. Electronic properties of paramagnetic ions in an [FeO4]0 centre.

Ion Configuration Ground spin state J g0

Fe3+ 3d5 6S 5/2 2
O− 2p5 2S 1/2 2

2. The structure and low-energy spin states of [FeO4]0 centres in quartz glasses

In many iron-doped glasses, EPR absorption spectra were observed with peaks in particular at
g ≈ 4.3 and g ≈ 6 [17]. The intensities of these peaks turned out to be proportional to the
concentration of Fe3+ impurities in the samples [18]. These EPR peaks can be unambiguously
attributed to Fe3+ impurities at Si4+ sites in a quartz lattice [18]. Reported model spin-
Hamiltonian-based calculations [18] show that for a perfectly tetrahedrally coordinated Fe3+
ion only the g = 2 isotropic value should be observed. The g ≈ 4.3 isotropic value comes from
two extra equal charges at the corners of the tetrahedron. The g ≈ 6 anisotropic component
results from one extra charge at the tetrahedron corner. The carriers of these extra charges may
be either interstitial ions or trapped holes.

In quartz glasses a considerable fraction of oxygen ions is in a nonbridging state1.
Assuming interatomic bonds in the quartz lattice to be purely ionic, an oxygen ion in a
nonbridging state may be considered as an O− ion, i.e. an O2− ion which has trapped a hole.
Above a certain temperature threshold this hole is able to diffuse across the oxygen sublattice.
So, if it meets an O2− ion neighbouring an Fe3+ ion in a network-forming (substitution) position
at a Si4+ site, the occurrence of the Fe3+–O− bound state becomes highly probable due to
compensation of the local charge defect. On the other hand, even in a perfect quartz lattice,
an Fe3+ impurity at a Si4+ site under certain conditions (e.g. ionizing radiation treatment)
can capture a hole at one of the neighbouring oxygens, as occurs e.g. in the case of [AlO4]0

centres in α-quartz (see [19] and references therein). The ions Fe3+ and O− form a small
bound polaron [16]. Following the terminology established, these centres will be denoted
[FeO4]0.

Consider the following general form of the spin Hamiltonian of the [FeO4]0 centre:

Ĥ[FeO4]0 = ĤZ + ĤD + ĤQ. (2)

Here the first term denotes the Zeeman coupling of the total electronic magnetic moment
of the centre to external magnetic field, the second denotes the electronic dipole coupling
between the spins of the Fe3+ and O− ions, and the third stands for the electronic quadrupole
interaction with the local EFG. The terms entering Hamiltonian (2) have orders of magnitude
HQ ∼ 10 K, HZ(1 T) ∼ 1 K, HD ∼ 0.5 K. Other possible terms, not included in (2), such
as those responsible for the nuclear quadrupole, dipole electron–nuclear and nuclear Zeeman
interactions, have orders of magnitude of 10−3 K and smaller.

Here and below the energy is denoted in units of the Boltzmann constant kB and therefore
it has the dimension of temperature.

The electronic shell configuration and spin properties of paramagnetic ions in an [FeO4]0

centre are given in table 1.
In Fe3+ the tetrahedral coordination in the quartz lattice does not change the free-ion

ground orbital state S. Due to the above-mentioned large value of the B = 0 ground-state
orbital splitting in O−, the B-field corrections to its orbital levels |px〉, |py〉 may be neglected
in the range B � 10 T, i.e. the O− orbital moment is effectively quenched too.

1 A bridging oxygen ion is one which bridges two silicon ions, i.e. is shared between two tetrahedral cells.
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For [AlO4]0 centres in α-quartz, which have the spatial structure similar to [FeO4]0 ones,
the interpretation of EPR spectra showed that the principal axes zs of both 27Al quadrupole and
27Al–O− dipole tensor matrices coincide with the unit radius-vector u, connecting Al3+ and
O− sites, with precision up to several degrees [19]. Of course, the spatial distribution of charge
and spin density in an Fe3+ electronic shell is different from that in a 27Al nucleus, but as an
approximation the principal axes zs of ĤQ and ĤD matrices will be assumed to be collinear to
u. Furthermore, since, according to the estimations above, HQ � HD in (2), the possible small
nonuniaxiality of the ĤD matrix will be neglected. Therefore one can choose the principal axes
of the ĤQ matrix to define the local basis. In this basis the spin Hamiltonian (2), assumed to
contain only quadratic terms in ĤQ, takes the form

Ĥ[FeO4]0 = g0β (s + S) · B + V⊥(sx Sx + sy Sy)+ Vzsz Sz + D0S2
z + E0(S

2
x − S2

y). (3)

Here β is the Bohr magneton, s and S are the spin operators of O− and Fe3+ ions
respectively, V⊥ = Vxx = Vyy and Vz are the principal values of the dipole interaction matrix
and D0 and E0 are constants, proportional to the EFG tensor principal values.

If an Fe3+ ion were situated in the centre of a regular tetrahedron with the vertices at O2−
sites, as for an [FeO4]− centre, the condition D0 = E0 = 0 would hold. If any two vertex sites
were occupied by O− ions, and the remaining two by O2− ions, as for [FeO4]+, the condition
D0 = 0, E0 �= 0 would hold. If one of the vertex sites is occupied by an O− ion and the other
three by O2− ions, as in the case of an [FeO4]0 centre, then the axis u is a C3 one and therefore

D0 �= 0, E0 = 0. (4)

Here an important remark should be made, that at a Si4+ site the exact tetrahedral symmetry
does not hold even in crystalline α-quartz [19]. Moreover, in the case of amorphous quartz even
stronger random distortions of the tetrahedral symmetry are expected and thus D0 �= 0, E0 �= 0
hold. Nevertheless, it is reasonable to assume that for an [FeO4]0 centre even in the amorphous
case the condition

|D0| � |E0| (5)

is realized and as a zero-order approximation one can assume condition (4) to be satisfied.
In this case, the eigenvalues of operator Sz are the proper quantum numbers and the energy
spectrum of ĤQ takes the simple form

E (0)
Q M

= D0 M2, M = ± 5
2 ,± 3

2 ,± 1
2 . (6)

According to the EPR data for [AlO4]0 centres in α-quartz [19] and estimations of the Fe3+
electronic quadrupole moment, one finds that for an [FeO4]0 centre the following condition
holds:

D0 < 0. (7)

Therefore, the ground energy level of ĤQ is a degenerate doublet with M = ± 5
2 :

E (0)
Q G

= 25
4 D0. (8)

Since the first excited doublet is separated from the ground one by a gap of −4D0 ∼ 40 K,
the thermodynamic population of the levels with M = ± 3

2 ,± 1
2 may be neglected in the

temperature region

T 	 |D0| . (9)

The lattice distortions, inherent to the glass structure, violate the C3 symmetry at an Fe3+
site and give rise to the spectrum corrections due to E0 �= 0. According to the Kramers theorem,
these corrections cannot lift the doublets’ degeneracy, but only change the gaps between the
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degenerate doublets. Nevertheless, if condition (5) is satisfied, the ground level (8) remains
the only thermodynamically relevant one and therefore the corrections due to E0 �= 0 may be
neglected.

In the zero-order approximation one can use products of eigenfunctions of the operators
Sz and sz as a basis set:

�
(0)
M,m = |M,m〉 , M = ± 5

2 ; m = ± 1
2 . (10)

The first-order corrections from ĤZ, ĤD to the ground energy level (8) and the
corresponding eigenstates are as follows:

E (1)
1/3 = − 5

2 g0βBz ∓
√

1
4 g2

0β
2
(
B2

x + B2
y

) + (
5
4 Vz − 1

2 g0βBz
)2
,

E (1)
2/4 = 5

2 g0βBz ∓
√

1
4 g2

0β
2
(
B2

x + B2
y

) + (
5
4 Vz + 1

2 g0βBz
)2;

(11)

�
(1)
1/2 =

(
− 5

4 Vz ∓ 2g0βBz − E (1)
1/2

) ∣∣∓ 5
2 ,∓ 1

2

〉 − 1
2 g0β

(
Bx ∓ iBy

) ∣∣∓ 5
2 ,± 1

2

〉
√(

− 5
4 Vz ∓ 2g0βBz − E (1)

1/2

)2 + 1
4 g2

0β
2
(
B2

x + B2
y

) ,

�
(1)
3/4 =

(
5
4 Vz ∓ 3g0βBz − E (1)

3/4

) ∣∣∓ 5
2 ,± 1

2

〉 − 1
2 g0β

(
Bx ± iBy

) ∣∣∓ 5
2 ,∓ 1

2

〉
√(

5
4 Vz ∓ 3g0βBz − E (1)

3/4

)2 + 1
4 g2

0β
2
(
B2

x + B2
y

) .

(12)

The second-order corrections to the ground quadruplet (11), affecting the levels’ positions
relative to their ‘mass centre’, are as follows:

E (2)
1/2 = 5g2

0β
2V 2

⊥
(
B2

x + B2
y

)

16D0

[(
− 5

4 Vz ∓ 2g0βBz − E (1)
1/2

)2 + 1
4 g2

0β
2
(
B2

x + B2
y

)] ;

E (2)
3/4 =

5V 2
⊥

(
5
4 Vz ∓ 3g0βBz − E (1)

3/4

)2

16D0

[(
5
4 Vz ∓ 3g0βBz − E (1)

3/4

)2 + 1
4 g2

0β
2
(
B2

x + B2
y

)] .
(13)

The condition of smallness of the Zeeman energy relative to the quadrupole one,

g0βB 	 |D0| , (14)

holds in the range of magnetic fields B 	 10 T, in which most of the experimental data under
consideration are obtained. Therefore the spin S may be considered to be quantized along the
axis u.

The condition of smallness of the Zeeman energy relative to the dipole interaction,

g0βB 	 |Vz| , (15)

holds in the range B 	 1 T, in which the spin s is quantized along S due to the dipole coupling.
In this case u is a proper quantization axis for the [FeO4]0 total spin J = S + s. Thus, if
condition (15) is satisfied, the only linear B-field contribution appearing in spectrum (11) is
that proportional to Bz .

If condition (15) is not met, the spin s behaves like a free one and therefore the terms
± 1

2 g0βB appear in spectrum (11).
It should be mentioned that transitions between the states |± 5

2 〉 under the influence of
alternating B-field are forbidden according to the selection rule �M = ±1 and therefore
cannot be observed by the EPR methods.
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3. [FeO4]0 centres as paramagnetic tunnelling systems and their dielectric susceptibility

It is established that the four O2− anions neighbouring the Si4+ cation in a perfect crystalline
lattice of α-quartz are equivalent in pairs. Namely, two of them form the long bonds to Si4+
with length 1.6145 Å, and two the short ones with length 1.6101 Å. A similar situation also
occurs for the [AlO4]0 substitution centres in α-quartz [19]. Therefore, the hole traps at the
long-bonded anions are about 0.03 eV deeper than those at the short-bonded ones. This means
that in the subkelvin temperature range the hole is surely localized at one of the long-bonded
oxygens. It is established for [AlO4]0 in α-quartz that at T � 15 K only the ground hole states
in each trap are relevant [20]. Therefore the accessible hole states are restricted to the ground
states |l〉 and |r〉 in an effective one-dimensional symmetric double-well potential.

If condition (15) is satisfied, the ground spin Hamiltonian doublet E1, E2 is separated from
the next doublet E3, E4 with a gap �E ≈ 2.5|Vz| ∼ 1 K and therefore only E1, E2 energy
levels are thermodynamically relevant at

T 	 |Vz| . (16)

Therefore, in the subkelvin temperature range both coordinate and spin relevant degrees
of freedom in the effective Hamiltonian of the [FeO4]0 centre may be introduced in the
pseudospin-1/2 representation and the centre itself may be treated in the frame of the PTS
formalism [15].

An overlap of the states |l〉 and |r〉 leads to the hole delocalization between them and causes
a tunnelling splitting �0 of the ground energy level. For the [AlO4]0 centres in crystalline α-
quartz �0 ≈ 12.4 mK [20], and for the [FeO4]0 centres such experimental data are absent.
Moreover, in the case of the [FeO4]0 centres in amorphous quartz it is natural to assume that
the double-well potential in the general case is an asymmetric one with the ground energy
difference h and tunnelling splitting �. The values h and � are random quantities obeying
a certain distribution function PPTS(h,�). Hereafter, the parameters h and � are assumed
to be independent and thus the distribution function has the form PPTS(h,�) = f (h)g(�).
The distribution function f (h) is assumed to be Gaussian, centred at zero and with half-width
δh, which is a fitting parameter of the theory. Moreover, the distribution g(�) is expected to
have a maximum at � close to �0, the value corresponding to [FeO4]0 centres in crystalline
quartz. This function is also expected to vanish quite rapidly when the argument approaches
zero or infinity. The simplest one-parameter function meeting these conditions is a Poisson
distribution. Then for the PTS distribution normalized to unity one has

PPTS (h,�) = 4�2

√
2πδh�3

0

exp

(
− h2

2δh2

)
exp

(
−2�

�0

)
. (17)

Let Pauli matrices σ̂x , σ̂y and σ̂z be the dimensionless components of the PTS dipole
moment and act in the subspace of coordinate states with the basis {|l〉, |r〉} (basis states
correspond to the hole localization in two accessible traps). Moreover, let Pauli matrices
τ̂x , τ̂y, τ̂z be the dimensionless components of the PTS magnetic moment and act in the
subspace of spin states with the basis {|p〉, |a〉} (basis states correspond to �1,2).

Let us also define operators

σ̂± = 1
2

(
σ̂x ± iσ̂y

) ; τ̂± = 1
2

(
τ̂x ± iτ̂y

)
, (18)

acting on the basis states as follows:

σ̂+ |l〉 = 1
2 |r〉 , σ̂+ |r〉 = 0, σ̂− |l〉 = 0, σ̂− |r〉 = 1

2 |l〉 ;
τ̂+ |p〉 = 1

2 |a〉 , τ̂+ |a〉 = 0, τ̂− |p〉 = 0, τ̂− |a〉 = 1
2 |p〉 . (19)

8
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Radius-vectors, connecting the Fe3+ and O− ions in the states |l〉 and |r〉, will be denoted
r|l〉 and r|r〉 respectively. They define the [FeO4]0 dipole moment in these states:

p|r〉,|l〉 = er|r〉,|l〉, (20)

where e is an elementary charge.
In the α-quartz crystalline lattice the vectors r|l〉 and r|r〉 form an angle α0 ≈ 108◦. It is to

be expected that in an amorphous network the angle α is a random variable, obeying a certain
distribution function P(α). However, in further discussion P(α) = δ(α − α0) will be taken
for simplicity.

Under condition (15), the linear Zeeman splitting between the states |p〉 and |a〉 in each of
the states |l〉, |r〉 is given by formula (11):

uZ
|l〉,|r〉 (B) = 6g0βu|l〉,|r〉 · B, (21)

where u|l〉 and u|r〉 are the unit vectors, corresponding to r|l〉 and r|r〉 and defining the directions
of the axis z in the states |l〉 and |r〉.

The external electric field E applied affects the double-well potential asymmetry in the
following way:

h (E) = h0 + (
p|l〉 − p|r〉

) · E, (22)

where h0 is the asymmetry value at E = 0.
Since u|l〉 and u|r〉, being the spin quantization axes in the states |l〉 and |r〉, are not parallel,

transitions between these states are accompanied by rotation of the coordinate system, within
which the spin components τ̂x , τ̂y and τ̂z are defined.

The single-well PTS spin wavefunction ψs is a spinor, which transforms at the coordinate
system rotation on arbitrary angle α around a unit vector n according to the following formula
(see e.g. [21]):

ψ ′
s = Unψs, ψs =

(
c|p〉
c|a〉

)
,

Un = cos (α/2)+ in · τ̂ sin (α/2) , τ̂ =
(
τ̂x

τ̂y

τ̂z

)
.

(23)

Using the notations defined above, the off-diagonal (tunnelling) part of the PTS
Hamiltonian reads

Ĥ o.−d.
PTS = − 1

2�
(
σ̂+Un + σ̂−U−1

n

) = − 1
2�

[
σ̂x cos (α/2)− σ̂yn · τ̂ sin (α/2)

]
, (24)

where� denotes the tunnelling matrix element between the states |l〉 and |r〉 in the Hamiltonian
of a spinless (two-level) TS.

Since the rotation can affect only the spin components τ̂x and τ̂z , the vector n is directed
along y: nx = nz = 0, ny = 1.

Then the PTS Hamiltonian takes the form

ĤPTS = −1/2
(
hσ̂z + δσ̂x + uZ

+τ̂z + uZ
−τ̂zσ̂z − Dσ̂y τ̂y

)
, (25)

where

uZ
+ = 1

2

(
uZ

|r〉 + uZ
|l〉

)
, uZ

− = 1
2

(
uZ

|r〉 − uZ
|l〉

) ; (26)

δ = � cos (α/2) , D = � sin (α/2) . (27)

The essential feature of the PTS Hamiltonian (25) is the last term, accounting for the
tunnelling-induced entanglement of spin states. Without loss of this feature one can consider
the simplified case uZ− = 0, corresponding to the situation when B is directed along the bisector

9
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line of the angle α. By introducing a brief notation uZ ≡ uZ+, this simplified Hamiltonian
reads

ĤPTS = −1/2
(
hσ̂z + δσ̂x + uZτ̂z − Dσ̂y τ̂y

)
. (28)

By projecting ĤPTS (28) onto the basis {|l, a〉, |r, a〉, |l, p〉, |r, p〉} and finding the principal
values of the resulting matrix, one readily obtains the PTS energy spectrum:

U1/4 = ∓ 1
2

√
G2+ + D2; U2/3 = ∓ 1

2

√
G2− + D2. (29)

In formula (29) a brief notation G± = uZ ± √
h2 + δ2 is introduced.

From (29) one can see that a nonzero value of the parameter D, being the tunnelling
matrix element between the states with different spin projections (and therefore accounting
for the tunnelling-induced entanglement of spin states), prevents degeneration of the levels U2

and U3 at uZ = √
h2 + δ2. This is an essential feature of the PTS model, giving rise to the

nonmonotonic B-dependence of the PTS dynamic dielectric susceptibility (see (35), (36) and
speculations below).

Using the energy spectrum (29), it is straightforward to write down an expression for the
isolated single-PTS free energy:

fPTS
[
uZ (B) , h (E) , δ, D, T

] = −T ln

[
2 cosh

(√
G2+ + D2/2T

)

+ 2 cosh

(√
G2− + D2/2T

)]
. (30)

Using the PTS free energy (30) together with the PTS parameter distribution function (17),
one is able to derive the PTS contribution to thermodynamic quantities. As an example
the calculation of the PTS ensemble dielectric susceptibility is presented below. In further
discussion the dielectric response of the PTS ensemble is assumed to be isotropic and therefore
the susceptibility function is a scalar.

The static dielectric susceptibility of a single PTS is given by the expression

χ stat
PTS = −∂2 fPTS/∂E2. (31)

For the sake of brevity, in equation (31) and below the arguments uZ(B), h(E), δ, D and
T of the free energy (30) and its derivatives are omitted where possible.

To account for the PTS relaxation dynamics at a finite frequency ω of external electric
driving field one needs to separate the static expression (31) into the resonant χ res

PTS (frequency-
independent) and the relaxation χ rel

PTS (frequency-dependent) parts. This separation looks
natural if one notes that the expression for PTS polarization PPTS = −∂ fPTS/∂E is a sum
(over the four PTS energy levels) of products of the relative population factors (obeying the
Gibbs distribution in the static case) and the corresponding diagonal elements of the PTS dipole
operator (in the energy representation). Thus the expression for χ res

PTS contains the result of
differentiation of the dipole matrix elements keeping the population factors constant, and the
expression for χ rel

PTS contains the result of differentiation of the population factors keeping the
dipole matrix elements constant. Moreover, the population factors are the frequency-dependent
quantities, since equilibration of a PTS with its environment takes a finite time.

The general form of the expression for the PTS dielectric susceptibility at a finite frequency
ω is as follows:

χPTS(ω) = χ res
PTS + χ rel

PTSφ (ω, {τ }) , (32)

where {τ } denotes a set of (three in the general case) PTS-lattice relaxation times, and φ(ω, {τ })
denotes a complex function, accounting for the nonequilibrium PTS response to ac external
driving field.

10
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The explicit forms of χ res
PTS and χ rel

PTS are as follows:

χ res
PTS =

(
p2

eff/3
)

sinh
(√

G2+ + D2/2T
) [

G+δ2
(
G2+ + D2

) + h2 D2
√

h2 + δ2
]

[
cosh

(√
G2+ + D2/2T

)
+ cosh

(√
G2− + D2/2T

)] [(
h2 + δ2

) (
G2+ + D2

)]3/2

−
(

p2
eff/3

)
sinh

(√
G2−+D2/2T

) [
G−δ2

(
G2−+D2

)−h2 D2
√

h2+δ2
]

[
cosh

(√
G2++D2/2T

)
+ cosh

(√
G2−+D2/2T

)] [(
h2+δ2

) (
G2−+D2

)]3/2
,

(33)

χ rel
PTS =

(
p2

eff/3
)

h2
[
cosh

(√
G2++D2

2T

)
G2+

G2++D2 + cosh

(√
G2−+D2

2T

)
G2−

G2−+D2

]

2T
(
h2 + δ2

) [
cosh

(√
G2+ + D2/2T

)
+ cosh

(√
G2− + D2/2T

)]

−
(

p2
eff/3

)
h2

[
sinh

(√
G2++D2

2T

)
G+√

G2++D2
− sinh

(√
G2−+D2

2T

)
G−√

G2−+D2

]2

2T
(
h2+δ2

) [
cosh

(√
G2++D2/2T

)
+ cosh

(√
G2−+D2/2T

)]2
, (34)

where p2
eff = (p|l〉 − p|r〉)2.

Both χ res
PTS and χ rel

PTS contain contributions which depend nonmonotonically on uZ at
nonzero

√
h2 + δ2. Let us denote them χ̃ res

PTS and χ̃ rel
PTS respectively:

χ̃ res
PTS =

(
p2

eff/3
)

sinh
(√

G2− + D2/2T
)

h2 D2

[
cosh

(√
G2+ + D2/2T

)
+ cosh

(√
G2− + D2/2T

)] (
h2 + δ2

) (
G2− + D2

)3/2
; (35)

χ̃ rel
PTS =

(
p2

eff/3
)

h2 cosh
(√

G2− + D2/2T
)

G2−
/(

G2− + D2
)

2T
(
h2 + δ2

) [
cosh

(√
G2+ + D2/2T

)
+ cosh

(√
G2− + D22T

)] . (36)

At uZ = √
h2 + δ2, χ̃ res

PTS and χ̃ rel
PTS reach their maximum and minimum values respectively.

The characteristic width of these ‘humps’ is proportional to D. Therefore, a nonzero value
of the parameter D, which accounts for the tunnelling-induced entanglement of spin states
(see (24) and (27)), causes the PTS dynamic dielectric susceptibility (32) to be a nonmonotonic
function of uZ.

The function φ(ω, {τ }) has the following limits:

lim
ω→0

φ (ω, {τ }) = 1; lim
ω→∞φ (ω, {τ }) = 0. (37)

In practice a frequency may be considered either infinitely small or large if the conditions
either ωτmax → 0 or ωτmin → ∞ are met, where τmax(min) is a maximal (minimal) value from
the set of PTS relaxation times.

At finite values of ω〈τ 〉 (〈τ 〉 is a characteristic relaxation time) the imaginary part of
φ(ω, {τ }) is nonzero, and therefore the PTS dynamic dielectric susceptibility (32) is a complex
value.

It is easy to see that a sum of nonmonotonic contributions (35) and (36) is a monotonic
function of uZ at D 	 T (the condition which holds in the major part of the experimental
temperature range; see (27) and table 2). Therefore, from (37) one finds that the static PTS
susceptibility (31) χ stat

PTS = limω→0 χPTS(ω) is a monotonic function of uZ.
The relaxation of dielectric response of the [AlO4]0 centres in α-quartz was experimentally

studied at B = 0 [20]. Assuming the phonon-mediated ground-state relaxation time of these

11
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Table 2. Fitting parameters in expression (40) for BAS.

n (m−3) α0

√
p2

eff (D) εm �0 (K) δh (K)

3.23 × 1024 108◦ [20] 5.2 [20] 7.0 [2] 25 × 10−3 2.3 × 104

centres at T � � to be inversely proportional to temperature and extrapolating the data [20]
obtained, for the temperature T ∼ 10−1 K one finds

〈τ 〉 ≈ 5 × 10−2 s. (38)

From (38) for the experimental frequency ν = 1 kHz one obtains ω〈τ 〉 ≈ 300, the value
corresponding to almost completely resonant response character. Meanwhile, experimental
data [1] give comparable magnitudes of relative variations of the real and imaginary parts of
the susceptibility, which fact contradicts the estimated value (38). The reason for this misfit may
be that the values of the double-well potential parameters, characteristic to glasses, especially
the energy asymmetries h, are quite different from those characteristic to crystals, which may
lead to a considerable decrease of 〈τ 〉.

The problem of derivation of an explicit form of the function φ(ω, {τ }) at finite values of ω
and B is outside the scope of the present investigation and will be considered elsewhere. Here
the calculations are restricted to the high-frequency limit of the PTS ensemble linear dielectric
susceptibility (the pure resonant response):

lim
ω→∞χPTS (ω) = χ res

PTS. (39)

Since δε′(B) 	 ε′, the following formula for δε′(B)/ε′ in the high-frequency limit is
true:

lim
ω→∞ δε

′ (B, T )/ε′ = n
[〈
χ res

PTS (B, T )
〉
PTS

− 〈
χ res

PTS (0, T )
〉
PTS

]

εmε0

= n

εmε0kB

∫ ∞

0
d�

∫ ∞

−∞
dh PPTS (h,�)

×
{
χ res

PTS

[
6g0βB cos

(α0

2

)
, h,� cos

(α0

2

)
,� sin

(α0

2

)
, T

]

− χ res
PTS

[
0, h,� cos

(α0

2

)
,� sin

(α0

2

)
, T

]}
, (40)

where n is a PTS volume concentration, εm and ε0 are the material and vacuum dielectric
constants respectively and 〈. . .〉PTS denotes averaging over the PTS distribution function (17).

The results of fitting equation (40) to experimental data [1] for BAS are presented in
figure 1. The values of fitting parameters are gathered in table 2.

4. A contribution of [FeO4]0 centres to specific heat

In this section a contribution from the [FeO4]0 ensemble to the specific heat as a function of B
and T is calculated.

Since the specific heat anomalies in some quartz glasses are observed mainly in the
subkelvin temperature range, in which condition (9) is satisfied, one can restrict a partition
function to the ground quadruplet of the [FeO4]0 spin Hamiltonian, within the second order
of perturbation theory given by expressions (11) and (13). One should take into account
that the structural disorder, characteristic to glasses, makes the parameters Vz and V⊥ of the

12
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dipole interaction operator ĤD random variables. The values Vz and V⊥ are interdependent
and obey a relation which for a pair of point dipoles reads Vz = −2V⊥. Therefore, a single-
argument distribution function G(Vz) is enough to account for the randomness of ĤD. The
distribution function G(Vz) must approach zero while its argument approaches either zero or
infinity and have a maximum at a definite argument value V0. The simplest one-parameter
function demonstrating such properties is a Poisson distribution:

G (Vz) = 4V 2
z

V 3
0

exp

(
−2Vz

V0

)
, Vz ∈ (−∞; 0]. (41)

One should remember that Vz is a negative value (the ground state corresponds to the
parallel dipole orientation) and therefore V0 < 0.

The angular distribution of quantization axes u in vitreous solids may be assumed to be
isotropic:

H (θ, ϕ) = (4π)−1 . (42)

Tunnelling transitions between the coordinate states |l〉 and |r〉 ensure their equilibrium
population at any temperature and therefore their contribution should be considered too. Since
the experimental data on specific heat are taken in the temperature range T � �0, one may
neglect the contribution of tunnelling splitting to the energy difference between these states and
assume it to be equal to h, where h is a random value, obeying distribution (17).

If one assumes � = 0, the tunnelling-induced coupling between the spatial and spin
degrees of freedom vanishes and therefore the free energy of an [FeO4]0 centre reduces to a
sum of spin and tunnelling contributions.

Thus, the subkelvin-range free energy of the [FeO4]0 ensemble, with the volume
concentration n and obeying distribution functions (17), (41) and (42), reads

F[FeO4]0 (T, B) = Fspin (T, B)+ Ftun (T ) , (43)

where

Fspin (T, B) = −T n
∫ 0

−∞
dVzG (Vz)× 1

2

∫ π

0
dθ sin (θ)× ln

[
4∑

i=1

exp

(
− E (1)

i +E (2)
i

T

)]
, (44)

Ftun (T ) = −T n
∫ ∞

0
d�

∫ ∞

−∞
dh PPTS (h,�)× ln

[
2 cosh

(
h

2T

)]
. (45)

The contribution from the [FeO4]0 ensemble to specific heat of a unit-mass sample with
the mass density ρ is as follows:

C[FeO4]0 (T, B) = − T

ρ

∂2 F[FeO4]0 (T, B)

∂T 2
. (46)

In (46), as usual for solids, the difference between specific heat at a constant pressure and
a constant volume is neglected.

From (45) one finds that the contribution from tunnelling transitions to specific heat reads

Ctun (T ) =
√

2

π

n

ρ

T

δh
L

(
δh

T

)
;

L

(
δh

T

)
=

∫ ∞

−∞
x2 exp

[
− 2x2

(δh/T )2

]
(cosh x)−2 dx .

(47)

At δh � T L is a constant and the value Ctun(T ) ∝ T /δh may be neglected due to large
characteristic values of δh for glasses (see table 2).
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Table 3. Fitting parameters in formula (48) for different glasses.

Glass n/ρ (kg−1) γph (J kg−1 K−4) γTS (J kg−1 K−2) V0 (K) D0 (K)

BAS 1.05 × 1021 1.55 × 10−3 3.1 × 10−4 −0.42 −10
Duran 2.5 × 1021 2.0 × 10−3 2.5 × 10−4 −0.42 −10
Pyrex 7740 2.3 × 1021 2.5 × 10−3 7 × 10−4 −0.42 −10
Pyrex 9700 0.8 × 1021 2.5 × 10−3 7 × 10−4 −0.42 −10

The final expression for specific heat per unit-mass of an amorphous solid, containing
[FeO4]0 centres, reads

CP (T, B) = Cg (T )+ Cspin (T, B) , (48)

where Cg(T ) is given by (1) and Cspin(T, B) is obtained from (44).
The results of fitting formula (48) to experimental data on specific heat for BAS, Duran

and two sorts of Pyrex are presented in figures 3(a)–(c). The values of fitting parameters are
collected in table 3.

5. An analysis of the results obtained

In this section the results obtained are discussed and compared to the experimental data
available. From figure 1 one can see that the dependence δε′(B)/ε′ for BAS, calculated in
the approximation of linear resonant response of the [FeO4]0-based PTS ensemble, is in a
semiquantitative agreement with experimental data [1] at T = 50 and 520 mK.2 In particular,
the increase of Bmax as well as the decrease of the amplitude δε′(B)/ε′ with increasing
temperature is reproduced. At the same time some quantitative disagreement is observed,
which may be attributed both to the oversimplicity of the model and to nonlinear effects. The
former includes the simplification of the PTS Hamiltonian (28) and the simplest possible form
of the model distribution function PPTS(h,�) (17) used. Another significant simplification is
consideration of only the two lowest energy levels E1 and E2 of the spin Hamiltonian and only
the two lowest coordinate states of the hole. Nevertheless, in the region of small B and T , where
conditions (15) and (16) are satisfied, the agreement between the theory and the experiment is
good, but outside this region only a qualitative agreement is achieved.

The effect of relaxation on the dielectric response of the PTS ensemble at finite frequencies
will be published elsewhere.

The value of PTS volume concentration n derived is close to the reported data of chemical
analysis [2], according to which BAS contains about 100 ppm of Fe3+ impurities. It is worth
noting that, since not all Fe3+ ions necessarily form the [FeO4]0 centres, an exact coincidence
between the value of n derived and the data of chemical analysis is not expected.

The large value obtained for the half-width δh (see table 2) of the distribution (17) of the
double-well potential asymmetries, ∼1 eV, seems quite reasonable and reflects the degree of
the lattice distortion compared to crystalline quartz, where this value is ∼1 K [20]. Therefore,
a conclusion may be drawn that at equal concentrations of [FeO4]0 centres in amorphous
and crystalline quartz in the latter case the amplitude of δε′(B)/ε′ should be a few orders
of magnitude larger, because δh enters the denominator of formula (40).

One can see that although the concentrations of [FeO4]0 centres in BAS and Duran have
equal orders of magnitude (see table 3), for Duran the magnitude of δε′(B)/ε′ at Bmax ∼ 10−2 T

2 The remaining data [1] are taken in the strongly nonlinear regime (see (49) and speculations below) and cannot be
fitted with the linear expression (40).
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is about 10 times smaller than that for BAS (cf. figures 1 and 2). This behaviour may be
explained by a larger value of δh for Duran due to larger lattice distortions (caused by network-
modifying impurities, different production technologies etc).

For the function δε′(B)/ε′ at T = 15 mK the present theory gives Bmax ≈ 4 × 10−3 T,
about half the experimental value for Duran in figure 2. The reason for this misfit is probably
nonlinear effects, leading to a shift of Bmax towards larger values. This conjecture is supported
by experimental studies of nonlinear dielectric response in BAS [1].

Generally speaking, the PTS nonlinear susceptibility function may be represented through
the series expansion in powers of the parameter

η =
√

p2
eff E/kBT , (49)

where E is an amplitude of driving electric field. Thus the value of η determines the ‘degree
of nonlinearity’ of the response. From equation (49) one finds that at the experimental
conditions given in figure 2 η ≈ 0.8, i.e. these data are obtained in a strongly nonlinear
regime. The nonlinearity effect may also be the reason for some misfit between the maxima
of theoretical and experimental data for BAS at T = 520 mK and E ≈ 15 kV m−1 in
figure 1, when the degree of nonlinearity makes up a noticeable value η ≈ 0.17. Indeed,
at T = 50 mK and E ≈ 0.6 kV m−1 in figure 1 one finds η ≈ 0.07, and the agreement
between experimental and theoretical maxima of δε′(B)/ε′ at these conditions is much better.
Moreover, finally, the similar behaviour of δε′(B)/ε′ in the borosilicate glasses Duran and BK7
in figure 2, in particular a tendency to an increase of δε′(B)/ε′ in strong magnetic field, may
be explained by a B-field reaction of a subsystem other than the ensemble of [FeO4]0-based
PTSs.

As concerns CP(T, B) of the BAS, Duran and Pyrex glasses, shown in figures 3(a)–
(c), a good agreement between the experimental data [2, 5, 6] and the results of the present
theory is observed. This fact, together with the realistic values for the concentration n and the
Fe3+–O− dipole coupling V0 derived, is strong evidence for [FeO4]0 centres to be present in
these glasses. Some quantitative disagreement may be attributed to the oversimplicity of the
model distribution function (41) used. At the same time, there is a minor misfit between the
experimental and theoretical dependence CP (T ) for Duran at zero magnetic field (figure 3(b)).
To a certain extent it may be removed by introducing into calculations the value of residual
magnetic field B0 ≈ 0.05 T. The same situation occurs with a fit of these experimental data in
the frame of the theory of Jug [4] (with a somewhat larger value of B0).

In general, the values of fitting parameters collected in tables 2 and 3 are in a reasonable
agreement with the literature data available. Some of the values in table 2 are adopted from
literature sources for the [AlO4]0 centres in α-quartz.

Another value which should be B-dependent due to the PTS contribution is the sound
velocity v. Calculations performed show that in the resonant (high-frequency) regime

δv′(B)/v′ ∝ −δε′(B)/ε′. (50)

The calculated magnitude of the relative variation of the sound velocity versus magnetic
field in Duran is found to be δv′ (B)/v′ ∼ 10−8 . . . 10−7. Similar to the dielectric constant
case, one can expect that at the same [FeO4]0 concentration, in crystalline quartz the amplitude
of δv′(B)/v′ would be some orders of magnitude larger due to much smaller lattice distortions.

One can also expect for other experimentally observable effects from [FeO4]0-based PTS
in quartz, in particular the B-dependent contribution to the amplitude of the spontaneous
polarization echo, which will be considered elsewhere.
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6. Conclusions

The results presented in this paper argue in favour of a suggestion that the substitution hole-
compensated [FeO4]0 centres are present in some quartz glasses containing Fe3+ impurities,
and contribute to their thermodynamic properties in the subkelvin temperature range.

Taking into account the ground quadruplet of states of the [FeO4]0 model spin
Hamiltonian, a good fit of experimental data on the magnetothermal dependence of the specific
heat for the BAS, Duran and Pyrex glasses is produced (see figures 3(a)–(c)).

Taking into account the tunnelling motion of the trapped hole, in the frame of the model of
paramagnetic tunnelling systems, a satisfactory fit of experimental data on dielectric constant
as a function of temperature and magnetic field is produced for the glass BAS (see figure 1).

Based on the model predictions, one can expect that the contribution from [FeO4]0 centres
to CP(T, B) should be qualitatively similar in both amorphous and crystalline quartz (apart
from a finite tunnelling contribution (47) in the latter case). At the same time the contribution
to δε′(B)/ε′ and δv′(B)/v′ in crystalline quartz should be some orders of magnitude larger
than it is in amorphous quartz due to the essentially smaller local lattice distortions in the
former case. An experimental check of these assumptions would be an additional verification
of the model.
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